perm filename DEMO.PR1[258,JMC] blob sn#146360 filedate 1975-02-18 generic text, type T, neo UTF8

1  (((M+N)+0)=(M+(N+0))∧∀N1.(((M+N)+N1)=(M+(N+N1))⊃((M+N)+SUCC N1)=(M+(N+SUCC N1))))⊃∀N1.((M+N)+N1)=(M+(N+N1))  %
  ∧I (INDUCTION) 

2  ((M+N)+0)=(M+N)    ∀E PLUS1 M+N 

3  (N+0)=N    ∀E PLUS1 N 

4  (M+N)=(M+N)    TAUTEQ 

5  (M+(N+0))=(M+N)    SUBST 3 IN 4 OCC (1) 

6  ∀N1.(((M+N)+N1)=(M+(N+N1))⊃((M+N)+SUCC N1)=(M+(N+SUCC N1)))⊃∀N1.((M+N)+N1)=(M+(N+N1))    TAUTEQ 

7  ((M+N)+N1)=(M+(N+N1))  (7)  ASSUME 

8  ((M+N)+SUCC N1)=SUCC ((M+N)+N1)    ∀E PLUS2 M+N , N1 

9  ((M+N)+SUCC N1)=SUCC (M+(N+N1))  (7)  SUBSTR 7 IN 8 

10  (M+SUCC (N+N1))=SUCC (M+(N+N1))    ∀E PLUS2 M , N+N1 

11  (N+SUCC N1)=SUCC (N+N1)    ∀E PLUS2 N , N1 

12  (M+(N+SUCC N1))=SUCC (M+(N+N1))    SUBST 11 IN 10 

13  ((M+N)+SUCC N1)=(M+(N+SUCC N1))  (7)  TAUTEQ 

14  ((M+N)+N1)=(M+(N+N1))⊃((M+N)+SUCC N1)=(M+(N+SUCC N1))    ⊃I 7 13 

15  ∀N1.(((M+N)+N1)=(M+(N+N1))⊃((M+N)+SUCC N1)=(M+(N+SUCC N1)))    ∀I 14 N1 ← N1 

16  ∀N1.((M+N)+N1)=(M+(N+N1))    ⊃E 15 6 

17  ((M+N)+K)=(M+(N+K))    ∀E 16 K 

18  ∀M N K.((M+N)+K)=(M+(N+K))    ∀I 17 M ← M N ← N K ← K 

19  ((0+0)=0∧∀N.((0+N)=N⊃(0+SUCC N)=SUCC N))⊃∀N.(0+N)=N    ∧I (INDUCTION) 

20  (0+0)=0    ∀E PLUS1 0 

21  ∀N.((0+N)=N⊃(0+SUCC N)=SUCC N)⊃∀N.(0+N)=N    TAUT 

22  (0+N)=N  (22)  ASSUME 

23  (0+SUCC N)=SUCC (0+N)    ∀E PLUS2 0 , N 

24  (0+SUCC N)=SUCC N  (22)  SUBSTR 22 IN 23 

25  (0+N)=N⊃(0+SUCC N)=SUCC N    ⊃I 22 24 

26  ∀N.((0+N)=N⊃(0+SUCC N)=SUCC N)    ∀I 25 N ← N 

27  ∀N.(0+N)=N    ⊃E 26 21 

28  ((0+1)=SUCC 0∧∀N.((N+1)=SUCC N⊃(SUCC N+1)=SUCC SUCC N))⊃∀N.(N+1)=SUCC N    ∧I (INDUCTION) 

29  (0+1)=1    ∀E 27 1 

30  ∀N.((N+1)=SUCC N⊃(SUCC N+1)=SUCC SUCC N)⊃∀N.(N+1)=SUCC N    TAUTEQ 

31  (N+1)=SUCC N  (31)  ASSUME 

32  (SUCC N+1)=(SUCC N+1)    TAUTEQ 

33  (SUCC N+1)=(SUCC N+SUCC 0)    SUBSTR ONE IN 32 OCC (2) 

34  (SUCC N+SUCC 0)=SUCC (SUCC N+0)    ∀E PLUS2 SUCC N , 0 

35  (SUCC N+0)=SUCC N    ∀E PLUS1 SUCC N 

36  (SUCC N+SUCC 0)=SUCC SUCC N    SUBSTR 35 IN 34 

37  (SUCC N+1)=SUCC SUCC N    TAUTEQ 

38  (N+1)=SUCC N⊃(SUCC N+1)=SUCC SUCC N    ⊃I 31 37 

39  ∀N.((N+1)=SUCC N⊃(SUCC N+1)=SUCC SUCC N)    ∀I 38 N ← N 

40  ∀N.(N+1)=SUCC N    ⊃E 39 30 

41  ((1+0)=SUCC 0∧∀N.((1+N)=SUCC N⊃(1+SUCC N)=SUCC SUCC N))⊃∀N.(1+N)=SUCC N    ∧I (INDUCTION) 

42  (1+0)=1    ∀E PLUS1 1 

43  ∀N.((1+N)=SUCC N⊃(1+SUCC N)=SUCC SUCC N)⊃∀N.(1+N)=SUCC N    TAUTEQ 

44  (1+N)=SUCC N  (44)  ASSUME 

45  (1+SUCC N)=SUCC (1+N)    ∀E PLUS2 1 , N 

46  (1+SUCC N)=SUCC SUCC N  (44)  SUBSTR 44 IN 45 

47  (1+N)=SUCC N⊃(1+SUCC N)=SUCC SUCC N    ⊃I 44 46 

48  ∀N.((1+N)=SUCC N⊃(1+SUCC N)=SUCC SUCC N)    ∀I 47 N ← N 

49  ∀N.(1+N)=SUCC N    ⊃E 48 43 

50  (∀M.((M+0)-0)=M∧∀N.(∀M.((M+N)-N)=M⊃∀M.((M+SUCC N)-SUCC N)=M))⊃∀N M.((M+N)-N)=M    ∧I (INDUCTION) 

51  (M+0)=M    ∀E PLUS1 M 

52  ((M+0)-0)=(M+0)    ∀E MINUS2 M+0 

53  ((M+0)-0)=M    TAUTEQ 

54  ∀M.((M+0)-0)=M    ∀I 53 M ← M 

55  ∀N.(∀M.((M+N)-N)=M⊃∀M.((M+SUCC N)-SUCC N)=M)⊃∀N M.((M+N)-N)=M    TAUT 

56  ∀M.((M+N)-N)=M  (56)  ASSUME 

57  ((M+SUCC N)-SUCC N)=PRED ((M+SUCC N)-N)    ∀E MINUS3 M+SUCC N , N 

58  (1+N)=SUCC N    ∀E 49 N 

59  ((M+SUCC N)-SUCC N)=PRED ((M+(1+N))-N)    SUBST 58 IN 57 OCC (3) 

60  ((M+1)+N)=(M+(1+N))    ∀E 18 M , 1 , N 

61  ((M+SUCC N)-SUCC N)=PRED (((M+1)+N)-N)    SUBST 60 IN 59 

62  (M+1)=SUCC M    ∀E 40 M 

63  ((M+SUCC N)-SUCC N)=PRED ((SUCC M+N)-N)    SUBSTR 62 IN 61 

64  ((SUCC M+N)-N)=SUCC M  (56)  ∀E 56 SUCC M 

65  ((M+SUCC N)-SUCC N)=PRED SUCC M  (56)  SUBSTR 64 IN 63 

66  PRED SUCC M=M    ∀E PEANO2 M 

67  ((M+SUCC N)-SUCC N)=M  (56)  SUBSTR 66 IN 65 

68  ∀M.((M+SUCC N)-SUCC N)=M  (56)  ∀I 67 M ← M 

69  ∀M.((M+N)-N)=M⊃∀M.((M+SUCC N)-SUCC N)=M    ⊃I 56 68 

70  ∀N.(∀M.((M+N)-N)=M⊃∀M.((M+SUCC N)-SUCC N)=M)    ∀I 69 N ← N 

71  ∀N M.((M+N)-N)=M    ⊃E 55 70 

72  ((0+N)-N)=0    ∀E 71 N , 0 

73  (0+N)=N    ∀E 27 N 

74  (N-N)=0    SUBSTR 73 IN 72 

75  ∀N.(N-N)=0    ∀I 74 N ← N